首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacological and residual effects in randomized placebo-controlled trials. A structural causal modelling approach
Authors:Michel Mouchart  André Bouckaert  Guillaume Wunsch
Affiliation:1. Institut de Statistique, Biostatistique et Sciences Actuarielles, UCLouvain;2. Demography, UCLouvain
Abstract:BackgroundDistinguishing between pharmacological and residual effects, this paper considers the problem of causal assessment in the case of a particular model, namely a Sure Outcome of Random Events (SORE) model developed for the analysis of data from a randomized placebo-controlled double-blind trial of a drug.MethodThis model takes into account two kinds of observable effects, a therapeutic effect and a side-effect. For each observable effect, two latent factors are considered, i.e. a pharmacological (or explained) factor and a residual (or unexplained) one.ResultsThe model presents a plausible mechanism generating the observed and latent outcomes, recursively decomposed into an ordered sequence of sub-mechanisms.ConclusionsThe characteristics of this model leads to a novel assessment of causality that evaluates the effect of latent variables and of the bias resulting from ignoring the structural features of the data generating process. This approach is illustrated by a numerical example, along with a case study based on a secondary analysis of real data.
Keywords:Corresponding author. Tel.: +3210450377  Causal assessment  Causal modelling  Structural modelling  Directed acyclic graph  Randomized placebo-controlled trials  Latent variables  Attribution causale  Modélisation causale  Modèle structurel  Graphe acyclique orienté  Essai avec placebo randomisé  Variables latentes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号