首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology
Authors:Hallab N J  Bundy K J  O'Connor K  Clark R  Moses R L
Institution:Biomedical Dept., Tulane University, New Orleans, LA 70118, USA.
Abstract:Adhesion of cells to a biomaterial surface can be a major factor mediating its biocompatibility. In this investigation, jet impingement techniques were used to quantify strength of cellular adhesion to various material surfaces. The metals tested: HS25 (a cobalt-based alloy similar to F75), 316L stainless steel, Ti-6Al-4V, and commercially pure tantalum, exhibited nearly a fivefold increase in adhesion strength above that characteristic of the polymeric materials tested (PTFE, silicone rubber, and HDPE). The present study examines physical and biological factors that might influence fibroblast adhesion to the biomaterial surface. The relation between surface charge and cellular adhesion was investigated in a controlled manner by measuring adhesion strength over a range of charge densities. The cells showed charge and electrical potential-dependent adhesion maxima, suggesting that surface alloying for optimum adherence may be possible. In a preliminary series of experiments adsorbed serum protein layers on a series of materials of differing adherence were investigated using gel electrophoresis to assess protein composition. Analysis of adsorbed proteins revealed little difference in relative abundance or total adsorption quantity. SEM micrographs of cells on Ti-6Al-4V and silicone rubber (high and low adhesion materials, respectively) demonstrated differences in cell morphology and cell density.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号