Distinct structural forms of type I collagen modulate cell cycle regulatory proteins in mesangial cells |
| |
Authors: | Schöcklmann H O Lang S Kralewski M Hartner A Lüdke A Sterzel R B |
| |
Affiliation: | Medizinische Klinik IV, Universit?t Erlangen-Nürnberg, Erlangen, Germany. Harald.Schoecklmann@t-online.de |
| |
Abstract: | BACKGROUND: Extracellular matrix molecules profoundly regulate cell behavior, including proliferation. In glomerulonephritis, type I collagen accumulates in the mesangium and is constantly structurally modified and degraded during the course of the disease. METHODS: We studied how two structurally distinct forms of type I collagen, monomer versus polymerized fibrils, affect cell proliferation, mitogen-activated protein kinase (MAPK) activation, and expression of G1-phase regulatory proteins in cultured rat mesangial cells (MCs). To analyze the possible involvement of collagen-binding integrins in type I collagen-derived growth signals further, distribution patterns of integrin chains were examined by immunocytochemistry. RESULTS: Polymerized type I collagen completely prevented the increase of DNA synthesis and cell replication induced by 5% fetal calf serum (FCS) or 25 ng/mL platelet-derived growth factor (PDGF) in MCs on monomer type I collagen. Protein expression of cyclins D1 and E was markedly down-regulated in MCs plated on polymerized type I collagen for eight hours in 5% FCS, as compared with MCs on monomer type I collagen. Incubation with 5% FCS reduced expression of the cdk-inhibitor protein p27Kip1 on monomer but not on polymerized type I collagen. Moreover, polymerized type I collagen markedly reduced cyclin E-associated kinase activity in the presence of 5% FCS. Polymerized type I collagen diminished the PDGF-induced phosphorylation and nuclear translocation of p42/p44 MAPK, but did not affect phosphorylation of PDGF beta-receptors. In MCs plated on monomer type I collagen, alpha1, alpha2, and beta1 integrin chains were recruited into focal contacts. However, on polymerized type I collagen, alpha2 and beta1, but not alpha1, integrin chains were condensed into focal contacts. CONCLUSIONS: The growth-inhibitory effect of polymerized type I collagen is characterized by rapid changes of expression and/or activation of MAPK and G1-phase regulators and could result from the lack of alpha1beta1 integrin signaling in MCs on polymerized type I collagen. Conceivably, deposition of polymerized type I collagen might reflect a reparative response to control MC replication in glomerular inflammation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|