首页 | 本学科首页   官方微博 | 高级检索  
     


Vermectomy enhances parvalbumin expression and improves motor performance in weaver mutant mice: an animal model for cerebellar ataxia.
Authors:U Grüsser-Cornehls  C Grüsser  J B?urle
Affiliation:Freie Universit?t Berlin, Fachbereich Humanmedizin, Universit?tsklinikum Benjamin Franklin, Department of Physiology, Germany.
Abstract:In the Weaver mutant mouse (wv/wv), an animal model for hereditary cerebellar ataxia, electrophysiological experiments have revealed a disorganized output of cerebellar Purkinje cells (the latter using GABA as an inhibitory transmitter) which, by a cascade of mechanisms, was thought to be the cause of the poor motor abilities. In Purkinje cell degeneration mice (pcd/pcd) lacking nearly all Purkinje cells and displaying milder motor deficiencies than wv, in comparison to wild-type mice, a strong increase in parvalbumin- and (co-localized with parvalbumin) glycine-immunopositive somata in the deep cerebellar and vestibular nuclei has recently been found. It was therefore intriguing to investigate whether motor performance in weaver mutants could be ameliorated by applying cerebellar lesions to eliminate the faulty output and to look for a change in transmitter weighting, indicated by a strong increase in parvalbumin-positive somata in areas (the respective target areas) which were formerly devoid of it. Ten Weaver mutants were subjected to cerebellar lesions. After removal of the vermis a total abolition of tremor, a definite improvement in the balance of affected body parts, an increase in locomotor activity when tested in an open-field matrix, and a strong increase in parvalbumin expression in Weaver mutant deep cerebellar and vestibular nuclei in comparison to wild-types have indeed been found. Increase in motor activity (or explorative behaviour) has been placed in relation to learning mechanisms. The increase in parvalbumin expression and the observed improvement in motor abilities and mechanisms probably related to learning underline the hypothesis that any change in the physiological equilibrium of the brain function by removal of input or output related to an assembly of nerve cells leads to a cascade of changes at the transmitter and neuronal level in near or distant connected brain structures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号