首页 | 本学科首页   官方微博 | 高级检索  
     


Machine learning using multimodal clinical,electroencephalographic, and magnetic resonance imaging data can predict incident depression in adults with epilepsy: A pilot study
Authors:Guillermo Delgado-García  Jordan D. T. Engbers  Samuel Wiebe  Pauline Mouches  Kimberly Amador  Nils D. Forkert  James White  Tolulope Sajobi  Karl Martin Klein  Colin B. Josephson  the Calgary Comprehensive Epilepsy Program Collaborators
Affiliation:1. Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;2. Desid Labs, Calgary, Alberta, Canada;3. Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;4. Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;5. Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada

Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

Abstract:
Keywords:depression  EEG  epilepsy  machine learning  MRI  prediction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号