首页 | 本学科首页   官方微博 | 高级检索  
检索        


Reliability of center of pressure measures for assessing the development of sitting postural control through the stages of sitting
Institution:1. Biomechanics Research Building, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA;2. College of Public Health, 984355 University of Nebraska Medical Center, Omaha, NE 68198-4355, USA;3. Hanger Clinics dba Advanced Prosthetics Center, 9109 Blondo St, Omaha, NE 68134, USA
Abstract:Cerebral palsy (CP) impairs an individual’s ability to move and control one’s posture. Unfortunately, the signs and symptoms of CP may not be apparent before age two. Evaluating sitting posture is a potential way to assess the developing mechanisms that contribute to CP. The purpose of this project was to determine the reliability of linear and nonlinear measures, including inter- and intrastage reliability, when used to analyze the center of pressure (COP) time series during the stages of sitting development in children with typical development (TD) and with/at-risk for cerebral palsy (CP). We hypothesized that nonlinear tools would be more reliable than linear tools in assessing childrens’ sitting development, and reliability would increase with development. COP data was recorded for three trials at eight sessions. Linear parameters used were root mean square, range of sway for the anterior-posterior (AP) and medial-lateral (ML) directions, and sway path. Nonlinear parameters used were Approximate Entropy, the largest Lyapunov Exponent, and Correlation Dimension for the AP and ML direction. Participants consisted of 33 children with TD and 26 children with/at-risk for CP. Our results determined that COP is a moderately reliable method for assessing the development of sitting postural control in stages in both groups. Thus, clinicians may be able to use measures from COP data across stages to assess the efficacy of therapeutic interventions that are intended to improve sitting postural abilities in children with/at-risk for CP.
Keywords:Cerebral palsy  Nonlinear dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号