A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance |
| |
Authors: | Xiaobin Feng Chuangshi Feng Yang Lu |
| |
Affiliation: | 1.Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China;2.Songshan Lake Materials Laboratory, Dongguan 523808, China;3.Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China;4.Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518060, China |
| |
Abstract: | The simultaneous improvement of mechanical and corrosion resistance is of great significance for engineering applications. In this work, a novel lightweight amorphous structure AlTiVNb high-entropy alloy (HEA) film was fabricated by magnetron sputtering. The compression test of the AlTiVNb HEA film nanopillar exhibits a high compressive strength of up to 3.6 GPa and deformability approaching 58%. The high strength is affected by the disordered state, the nanostructure, and the lattice distortion effect, while the high ductility comes from the ductile shear band and the island structure. In addition, the AlTiVNb HEA film shows a current density of 4.90 × 10−8 A/cm2 and a potential of −0.234 V in the 3.5% NaCl solution, comparable to that of the 316L stainless steel. The chemical disorder state, cocktail effect, and homogeneous amorphous structure contribute to excellent corrosion resistance. This finding offers new insights into high-performance HEA films with robust mechanical and anticorrosion performances for microelectronic devices and mechanical metamaterials. |
| |
Keywords: | AlTiVNb lightweight high-entropy alloy film amorphous structure strength-ductility synergy corrosion resistance |
|
|