首页 | 本学科首页   官方微博 | 高级检索  
     


Bond Stress–Slip Model of BFRP Grid to ECC
Authors:Langni Deng  Taisheng Li  Mengjun Zhong  Ling Liao  Hua Li
Affiliation:School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract:The bonding performance between a basalt fiber-reinforced composite material (BFRP) grid and an engineering cementitious composite (ECC) is the basis that affects the synergy between the two. However, the research on the bonding behavior between the FRP grid and ECC is limited; in particular, the theoretical study on the bond–slip intrinsic relationship model and a reliable anchorage length calculation equation is lacking. To study the bond–slip relationship between the BFRP grid and ECC material, we considered the parameters of BFRP grid thickness, anchorage length, ECC substrate protective layer thickness, and grid surface treatment, and conducted center pull-out tests on eight sets of specimens. By analyzing the characteristics of the bond–slip curve of the specimen, a bond–slip constitutive model between the BFRP grid and ECC was established. Combining the principle of equivalent strain energy, the calculation formula of the basic anchorage length of the BFRP grid in the ECC matrix was derived. Research shows that the bonding performance between the BFRP grid and ECC improves with the increase in the grid anchoring length, grid thickness, and ECC layer strength. Sand sticking on the surface of the BFRP grid can enhance the bonding force between the two. The established bond–slip constitutive model curve is in good agreement with the test curve. The bond–slip relationship between the BFRP grid and ECC can be described by the first two stages in the BPE model. The derived formula for calculating the basic anchorage length of the BFRP mesh in the ECC matrix is computationally verified to be reliable in prediction.
Keywords:BFRP grid, ECC, composite materials, bond–  slip, constitutive model, anchorage length
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号