首页 | 本学科首页   官方微博 | 高级检索  
     


The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel
Authors:Nagai Yusuke  Yokoi Hidenori  Kaihara Keiko  Naruse Keiji
Affiliation:a Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
b Menicon Co., Ltd., Japan
Abstract:The aim of this present study was to provide a scaffold as a tool for the investigation of the effect of mechanical stimulation on three-dimensionally cultured cells. For this purpose, we developed an artificial self-assembling peptide (SPG-178) hydrogel scaffold. The structural properties of the SPG-178 peptide were confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and transmission electron microscopy (TEM). The mechanical properties of the SPG-178 hydrogel were studied using rheology measurements. The SPG-178 peptide was able to form a stable, transparent hydrogel in a neutral pH environment. In the SPG-178 hydrogel, mouse skeletal muscle cells proliferated successfully (increased by 12.4 ± 1.5 times during 8 days of incubation; mean ± SEM). When the scaffold was statically stretched, a rapid phosphorylation of ERK was observed (increased by 2.8 ± 0.2 times; mean ± SEM). These results demonstrated that the developed self-assembling peptide gel is non-cytotoxic and is a suitable tool for the investigation of the effect of mechanical stimulation on three-dimensional cell culture.
Keywords:Cell proliferation   Self-assembly   Hydrogel   Scaffold   Mechanical strain
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号