首页 | 本学科首页   官方微博 | 高级检索  
     

乳腺X线图像肿块分割
引用本文:欧阳成,丁辉,王广志. 乳腺X线图像肿块分割[J]. 北京生物医学工程, 2007, 26(3): 237-240,M0002
作者姓名:欧阳成  丁辉  王广志
作者单位:清华大学医学院生物医学工程系,北京,100084;清华大学医学院生物医学工程系,北京,100084;清华大学医学院生物医学工程系,北京,100084
基金项目:清华-裕元医学科学研究基金
摘    要:乳腺肿块分割是乳腺癌计算机辅助诊断(CAD)检测和识别系统中关键的一步.由于乳腺肿块与背景相互交叠、边界不清晰、乳房密度不均匀,使得其分割比较困难.本文基于区域增长算法,研究了利用乳腺肿块自身特征得到最优分割阈值的方法,从而提出一种对乳腺X线图像肿块快速、有效的分割方法.实验结果表明该方法在保证肿块针状化特征情况下,拥有较好的分割效果.

关 键 词:乳腺X光图像  乳腺肿块  图像分割  计算机辅助诊断  区域增长  针状化特征
文章编号:1002-3208(2007)03-0237-04
收稿时间:2006-05-22
修稿时间:2006-05-222006-08-22

Segmentation of masses in mammograms
OUYANG Cheng,DING Hui,WANG Guangzhi. Segmentation of masses in mammograms[J]. Beijing Biomedical Engineering, 2007, 26(3): 237-240,M0002
Authors:OUYANG Cheng  DING Hui  WANG Guangzhi
Affiliation:Department of Biomedical Engineering, Tsinghua University, Beifing 100084
Abstract:Segmentation is the vital step in computer-aided diagnosis on masses of mammograms. A challenge for mass segmentation in mammograms is that masses may connect with some surrounding tissues which have the similar intensity,and the intensities in mammograms are not symmetrical. In this paper, a novel improved region growing-based algorithm is proposed. In this algorithm, some important features of masses are utilized to get the best segmentation threshold. The experiments show good results with keeping the spiculation of masses, which is a primary sign of malignancy for masses.
Keywords:mammogram    mass    segmentation    computer-aided diagnosis    region growing   spiculation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号