Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts |
| |
Authors: | Stawowy Philipp Margeta Christian Blaschke Florian Lindschau Carsten Spencer-Hänsch Chantel Leitges Michael Biagini Giuseppe Fleck Eckart Graf Kristof |
| |
Affiliation: | Department of Medicine-Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany. |
| |
Abstract: | OBJECTIVE: Angiotensin II (AII) promotes cardiac fibrosis by increased extracellular matrix production and enhanced interaction of matrix proteins with their cellular receptors, including integrins. AII and other growth factors augment beta(1)-integrin-dependent adhesion and spreading by "inside-out signaling" without affecting the total number of integrin receptors. "Inside-out signaling" involves specific signaling pathways, including protein kinase C (PKC), leading to activation of beta1-integrins. In the present study we investigated the mechanisms involved in AII-increased adhesion of adult rat cardiac fibroblasts (CFBs), obtained from Sprague-Dawley rats, to collagen I mediated by beta1-integrin. METHODS AND RESULTS: Treatment of CFBs with AII induced a concentration-dependent increase in adhesion to collagen I (2.2-fold, p<0.01) within 3-6 h of treatment. This effect was mediated by beta1-integrin via the angiotensin AT1 receptor and was significantly reduced by protein kinase C inhibition. AII significantly induced phosphorylation of PKC epsilon (PKCepsilon), which is involved in beta1-integrin-dependent adhesion and motility, and phosphorylation of the cytoplasmatic tail of beta1-integrin at threonine 788/789, required for adhesion. Phosphorylation of beta1-integrin and an increase in adhesion was also induced by l-alpha-phosphatidylinositol-3,4,5-triphosphate (l-alpha-PIP3), an activator of endogenous PKCepsilon. AII failed to increase adhesion in myofibroblasts obtained from PKCepsilon (-/-) mice, but not in cells obtained from control mice. Co-immunoprecipitation and double immunofluorescence demonstrated that AII induced a close association of PKCepsilon with beta1-integrin in CFBs. CONCLUSION: The present study demonstrates that AII increased beta1-integrin-dependent adhesion to collagen I in cardiac fibroblasts by inside-out signaling via PKCepsilon and phosphorylation of the cytoplasmatic tail of the beta1-integrin. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|