首页 | 本学科首页   官方微博 | 高级检索  
检索        


Differential signalling through ALK-1 and ALK-5 regulates leptin expression in mesenchymal stem cells
Authors:Zeddou Mustapha  Relic Biserka  Malaise Olivier  Charlier Edith  Desoroux Aline  Beguin Yves  de Seny Dominique  Malaise Michel G
Institution:Laboratory of Rheumatology, GIGA-I3, GIGA Research Centre, University and CHU of Liège, Liège, Belgium.
Abstract:Leptin plays a central role in maintaining energy balance, with multiple other systemic effects. Despite leptin importance in peripheral regulation of mesenchymal stem cells (MSC) differentiation, little is known about its expression mechanism. Leptin is often described as adipokine, while it is expressed by other cell types. We have recently shown an in vitro leptin expression, enhanced by glucocorticoids in synovial fibroblasts (SVF). Here, we investigated leptin expression in MSC from bone marrow (BM-MSC) and umbilical cord matrix (UMSC). Results showed that BM-MSC, but not UMSC, expressed leptin that was strongly enhanced by glucocorticoids. Transforming growth factor β1 (TGF-β1) markedly inhibited the endogenous- and glucocorticoid-induced leptin expression in BM-MSC. Since TGF-β1 was shown to signal via ALK-5-Smad2/3 and/or ALK-1-Smad1/5 pathways, we analyzed the expression of proteins from both pathways. In BM-MSC, TGF-β1 increased phosphorylated Smad2 (p-Smad2) expression, while ALK-5 inhibitor (SB431542) induced leptin expression and significantly restored TGF-β1-induced leptin inhibition. In addition, both prednisolone and SB431542 increased p-Smad1/5 expression. These results suggested the ALK-5-Smad2 pathway as an inhibitor of leptin expression, while ALK-1-Smad1/5 as an activator. Indeed, Smad1 expression silencing induced leptin expression inhibition. Furthermore, prednisolone enhanced the expression of TGF-βRII while decreasing p-Smad2 in BM-MSC and SVF but not in UMSC. In vitro differentiation revealed differential osteogenic potential in SVF, BM-MSC, and UMSC that was correlated to their leptin expression potential. Our results suggest that ALK-1/ALK-5 balance regulates leptin expression in MSC. It also underlines UMSC as leptin nonproducer MSC for cell therapy protocols where leptin expression is not suitable.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号