首页 | 本学科首页   官方微博 | 高级检索  
检索        


Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation
Authors:Pham Nam-Kha  Mouriz Jennifer  Kima Peter E
Institution:Department of Microbiology and Cell Science, Building 981, Box 110700, University of Florida, Gainesville, FL 32611, USA.
Abstract:Whereas infections of macrophages by promastigote forms of Leishmania mexicana pifanoi induce the production of superoxide, infections by amastigotes barely induce superoxide production. Several approaches were employed to gain insight into the mechanism by which amastigotes avoid eliciting superoxide production. First, in experiments with nitroblue tetrazolium, we found that 25% of parasitophorous vacuoles (PVs) that harbor promastigotes are positive for the NADPH oxidase complex, in contrast to only 2% of PVs that harbor amastigotes. Second, confocal microscope analyses of infected cells labeled with antibodies to gp91phox revealed that this enzyme subunit is found in PVs that harbor amastigotes. Third, in immunoblots of subcellular fractions enriched with PVs from amastigote-infected cells and probed with antibodies to gp91phox, only the 65-kDa premature form of gp91phox was found. In contrast, subcellular fractions from macrophages that ingested zymosan particles contained both the 91- and 65-kDa forms of gp91phox. This suggested that only the immature form of gp91phox is recruited to PVs that harbor amastigotes. Given that gp91phox maturation is dependent on the availability of heme, we found that infections by Leishmania parasites induce an increase in heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation. Infections by amastigotes performed in the presence of metalloporphyrins, which are inhibitors of HO-1, resulted in superoxide production by infected macrophages. Taken together, we propose that Leishmania amastigotes avoid superoxide production by inducing an increase in heme degradation, which results in blockage of the maturation of gp91phox, which prevents assembly of the NADPH oxidase enzyme complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号