首页 | 本学科首页   官方微博 | 高级检索  
     


A Novel Method for Automatic Identification of Motion Artifact Beats in ECG Recordings
Authors:Yuewen Tu  Xiuquan Fu  Dingli Li  Chao Huang  Yawei Tang  Shuming Ye  Hang Chen
Affiliation:Bio-analytical Instruments Lab, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
Abstract:This paper presents a novel method for automatic identification of motion artifact beats in ECG recordings. The proposed method is based on the ECG complexes clustering, fuzzy logic and multi-parameters decision. Firstly, eight simulated datasets with different signal-to-noise ratio (SNR) were built for identification experiments. Results show that the identification sensitivity of our method is sensitive to SNR levels and acts like a low-pass filter that matches the cardiologists' recognition, while the Norm FP rate and PVB FP rate keep significantly low regardless of SNR. Furthermore, a simulated dataset including random durations of motion activities superimposed segments and two clinical datasets acquired from two different commercial recorders were adopted for the evaluation of accuracy and robustness. The overall identification results on these datasets were: sensitivity >94.69%, Norm FP rate <0.60% and PVB FP rate <2.65%. All the results were obtained without any manual threshold adjustment according to the priori information, thus dissolving the drawbacks of previous published methods. Additionally, the total cost time of our method applied to 24 h recordings is less than 1 s, which is extremely suitable in the situation of magnanimity data in long-term ECG recordings.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号