首页 | 本学科首页   官方微博 | 高级检索  
检索        


Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force
Authors:Ito Akira  Hibino Eri  Kobayashi Chiaki  Terasaki Hiroko  Kagami Hideaki  Ueda Minoru  Kobayashi Takeshi  Honda Hiroyuki
Institution:Department of Biotechnology, School of Engineering, Nagoya University, Japan.
Abstract:Choroidal neovascularization (CNV) is the most severe form of age-related macular degeneration (AMD), which causes rapid visual loss. Transplantation of cultured retinal pigment epithelium (RPE) cell sheet by tissue engineering is a possible approach to the treatment of CNV. In the present study, we investigated the possibility of using magnetite nanoparticles and magnetic force to construct and deliver RPE cell sheets in vitro. When magnetite cationic liposomes (MCLs), having a positive charge at the surface, were added to ARPE-19 human RPE cells at a concentration of 25 or 50 pg of magnetite per cell, the cells took up 40 to 55% of the MCLs. The magnetically labeled ARPE-19 cells (8 x 10(3) cells/mm(2), which corresponds to 10-fold the confluent concentration against the culture area 4 mm(2)]) were seeded into an ultra-low-attachment plate and a magnet (4000 G) was placed under the well. The magnetically labeled ARPE-19 cells formed an approximately 15-layered cell sheet after a 24 h of culture. When the magnet was removed, the sheets were detached from the bottom of the plate and then harvested and transferred to a tissue culture dish, using a magnet. Subsequently, the cell sheets were attached onto the dish, and the cells growing on the sheets were observed. This novel methodology, termed "magnetic force-based tissue engineering" (Mag-TE), is a possible approach for CNV treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号