首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement
Authors:Fisher Nicholas G  Christiansen Jonathan P  Klibanov Alexander  Taylor Ronald P  Kaul Sanjiv  Lindner Jonathan R
Affiliation:Cardiovascular Imaging Center, Cardiovascular Division, University of Virginia, Charlottesville, Virginia 22908-0158, USA.
Abstract:OBJECTIVE: The goal of the study was to determine whether microbubble charge influences the microvascular retention of microbubble contrast agents. BACKGROUND: Interactions between serum proteins and lipid membranes are greater with anionic compared with neutral membranes. These interactions may influence the microvascular behavior of anionic lipid microbubbles. METHODS: Intravital microscopy of the cremaster muscle was performed in six wild-type mice and three C3-deficient mice during intravenous injection of lipid-shelled microbubbles with either a neutral or a negative charge. Both agents were prepared with and without a protective surface layer of polyethyleneglycol (PEG). Complement attachment to microbubbles was assessed by flow cytometry with flourescein isothiocyanate-conjugated anti-C3b monoclonal antibody. Myocardial contrast echocardiography was performed in six dogs to assess pulmonary and myocardial retention of microbubbles. RESULTS: Size-independent capillary retention of microbubbles, occurring for a few seconds to >10 min, was frequently observed with anionic, but rarely with neutral, microbubbles (4.3 +/- 0.3 vs. 0.4 +/- 0.1 mm(-3), p < 0.01). Anionic microbubble retention was reduced by 70% by surface PEG and was also markedly reduced in C3-deficient mice (1.4 +/- 0.1 mm(-3), p < 0.05 vs. wild-type). Flow cytometry demonstrated complement attachment to only anionic microbubbles. Contrast echocardiography indicated both pulmonary and myocardial retention of only anionic microbubbles, the latter evidenced by persistent opacification >10 min after bolus intravenous injection. CONCLUSIONS: Lipid microbubbles with a net negative charge can be retained within capillaries via complement-mediated attachment to endothelium. This property may be useful for the development of ultrasound contrast agents that can be imaged late after venous injection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号