Cilostazol, an inhibitor of type 3 phosphodiesterase, produces endothelium-independent vasodilation in pressurized rabbit cerebral penetrating arterioles |
| |
Authors: | Nakamura Kazuya Ikomi Fumitaka Ohhashi Toshio |
| |
Affiliation: | Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan. |
| |
Abstract: | We investigated the effects of cilostazol, a potent inhibitor of cGMP-inhibited cAMP phosphodiesterase, on mechanical activity of isolated pressurized rabbit cerebral penetrating arterioles with special reference to the function of the endothelium. Both cilostazol and milrinone, another inhibitor of cAMP phosphodiesterase, produced vasodilation of the cerebral penetrating arterioles in a dose-dependent manner. Pretreatment with selective inhibitors of cyclooxygenase or nitric oxide synthase, or chemical denudation of the endothelial cells caused no significant effect on the cilostazol-mediated vasodilation of the cerebral arterioles. A selective large-conductance calcium-activated potassium channel inhibitor, iberiotoxin, and a selective protein kinase A inhibitor, H-89, caused no significant effect on the cilostazol-mediated vasodilation. In the cerebral arterioles, low concentration (10(-6)M) of cilostazol or milrinone caused a significant shift of the dose-vasodilatory response curve for adenosine to the left. These findings suggest that cilostazol produces vasodilation independent of the presence of the endothelium or activation of endogenous vasodilative prostaglandins, nitric oxide, calcium-activated potassium channel and protein kinase A. In conclusion, the vasodilator action of cilostazol may, in part, contribute to the beneficial effect of preventing lacunar cerebral infarction in patients with functional damage of the endothelium in cerebral penetrating arterioles. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|