首页 | 本学科首页   官方微博 | 高级检索  
检索        


Acetaminophen-induced hepatic glycogen depletion and hyperglycemia in mice
Authors:Jack A Hinson  Joann B Mays  Alex M Cameron
Institution:National Center for Toxicological Research, Jefferson, AR 72079, U.S.A.
Abstract:Two hours following administration of a hepatotoxic dose of acetaminophen (500 mg/kg, i.p.) to mice, liver sections stained with periodic acid Schiff reagent showed centrilobular hepatic glycogen depletion. A chemical assay revealed that following acetaminophen administration (500 mg/kg) hepatic glycogen was depleted by 65% at 1 hr and 80% at 2 hr, whereas glutathione was depleted by 65% at 0.5 hr and 80% at 1.5 hr. Maximal glycogen depletion (85% at 2.5 hr correlated with maximal hyperglycemia (267 mg/100 ml at 2.5hr). At 4.0 hr following acetaminophen administration, blood glucose levels were not significantly different from saline-treated animals; however, glycogen levels were still maximally depleted. A comparison of the dose-response curves for hepatic glycogen depletion and glutathione depletion showed that acetaminophen (50–500 mg/kg at 2.5 hr) depleted both glycogen and glutathione by similar percentages at each dose. Since acetaminophen (100 mg/kg at 2.5 hr) depleted glutathione and glycogen by approximately 30%, evidence for hepatotoxicity was examined at this dose to determine the potential importance of hepatic necrosis in glycogen depletion. Twenty-four hours following administration of acetaminophen (100 mg/kg) to mice, histological evidence of hepatic necrosis was not detected and serum glutamate pyruvate transaminase (SGPT) levels were not significantly different from saline-treated mice. The potential role of glycogen depletion in altering the acetaminophen-induced hepatotoxicity was examined subsequently. When mice were fasted overnight, hepatic glutathione and glycogen were decreased by 40 and 75%, respectively, and fasted animals showed a dramatic increase in susceptibility to acetaminophen-induced hepatotoxicity as measured by increased SGPT levels. Availability of glucose in the drinking water (5%) overnight resulted in glycogen levels similar to those in fed animals, whereas hepatic glutathione levels were not significantly different from those of fasted animals. Fasted animals and animals given glucose water overnight were equally susceptible to acetaminophen-induced hepatotoxicity, as quantitated by increases in SGPT levels 24 hr after drug administration. The potential role of a reactive metabolite in glycogen depletion was investigated by treating mice with N-acetylcysteine to increase detoxification of the reactive metabolite. N-Acetylcysteine treatment of mice prevented acetaminophen-induced glycogen depletion.
Keywords:Correspondence should be addressed to: Dr J  A  Hinson  Carcinogenesis Research Division  National Center for Toxicological Research  Jefferson  AR 72079  U  S  A  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号