首页 | 本学科首页   官方微博 | 高级检索  
     


Penalized least squares regression methods and applications to neuroimaging
Authors:Bunea Florentina  She Yiyuan  Ombao Hernando  Gongvatana Assawin  Devlin Kate  Cohen Ronald
Affiliation:a Florida State University, Department of Statistics, USA;b Brown University, Biostatistics Section, USA;c Brown University, School of Medicine, USA
Abstract:The goals of this paper are to review the most popular methods of predictor selection in regression models, to explain why some fail when the number P of explanatory variables exceeds the number N of participants, and to discuss alternative statistical methods that can be employed in this case. We focus on penalized least squares methods in regression models, and discuss in detail two such methods that are well established in the statistical literature, the LASSO and Elastic Net. We introduce bootstrap enhancements of these methods, the BE-LASSO and BE-Enet, that allow the user to attach a measure of uncertainty to each variable selected. Our work is motivated by a multimodal neuroimaging dataset that consists of morphometric measures (volumes at several anatomical regions of interest), white matter integrity measures from diffusion weighted data (fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity) and clinical and demographic variables (age, education, alcohol and drug history). In this dataset, the number P of explanatory variables exceeds the number N of participants. We use the BE-LASSO and BE-Enet to provide the first statistical analysis that allows the assessment of neurocognitive performance from high dimensional neuroimaging and clinical predictors, including their interactions. The major novelty of this analysis is that biomarker selection and dimension reduction are accomplished with a view towards obtaining good predictions for the outcome of interest (i.e., the neurocognitive indices), unlike principal component analysis that are performed only on the predictors' space independently of the outcome of interest.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号