首页 | 本学科首页   官方微博 | 高级检索  
检索        


NDP kinase reactivity towards 3TC nucleotides
Authors:Kreimeyer A  Schneider B  Sarfati R  Faraj A  Sommadossi J P  Veron M  Deville-Bonne D
Institution:Unité de Régulation Enzymatique des Activités Cellulaires, CNRS FRE 2364 Institut Pasteur 25, rue du Dr Roux, 75724 Cedex 15, Paris, France.
Abstract:Nucleoside diphosphate (NDP) kinase is usually considered as the enzyme responsible for the last step of the cellular phosphorylation pathway leading to the synthesis of biologically active triphospho-derivatives of nucleoside analogs used in antiviral therapies and in particular in the treatment of AIDS. NDP kinase lacks specificity for the nucleobase and can use as substrate both ribo- or 2'-deoxyribonucleotides. However, only nucleoside analogs with a sugar moiety in the D-configuration (e.g. 3'-deoxy-3'-azidothymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T)) have so far been analyzed as substrates of NDP kinase. In contrast, beta-L-2',3'-dideoxy-3'-thiacytidine (3TC), also called lamivudine, is a nucleoside analog that is now widely used in AIDS therapy and has a sugar moiety in the L-configuration. Using protein fluorescence to monitor the phosphotransfer between the enzyme and the nucleotide derivative at the presteady state, we have studied the reactivity of 3TC triphosphate and of other L-dideoxynucleotides with NDP kinase. We found that L-dideoxynucleoside triphosphates have a poor affinity for NDP kinase and that the catalytic efficiency of the phosphorylation of L-dideoxyderivatives is very low as compared with their D-enantiomers. We discuss these results using a computer model of 3TC diphosphate bound to the NDP kinase active site. NDP kinase may not seem to be the major enzyme phosphorylating 3TC-DP, in contrast to current opinion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号