首页 | 本学科首页   官方微博 | 高级检索  
     


Electrophysiological and pharmacological properties of GluR1, a subunit of a glutamate receptor-channel expressed in Xenopus oocytes.
Authors:B Lambolez  P Curutchet  J Stinnakre  P Bregestovski  J Rossier  L Prado de Carvalho
Affiliation:Laboratoire de Physiologie Nerveuse, CNRS, Gif sur Yvette, France.
Abstract:A cDNA clone encoding an excitatory amino acid receptor was isolated from a rat brain cDNA library by Hollmann et al. (Nature, 342 (1989) 643-648). In Xenopus oocytes, this clone, GluR1, expressed a functional receptor-channel activated by kainate (KA), domoate (D), glutamate and quisqualate (QA). The apparent affinity (EC50) for QA (0.1 microM) was higher than that for KA (50 microM). The maximal response to QA was about 1/10 of that to KA. QA inhibited the KA induced current. The N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxaline-2,3 dione (DNQX) competitively blocked the effects of both agonists. Currents induced by KA, QA and D in oocytes expressing GluR1 showed identical voltage sensitivities. GluR1 and KA receptor-channels expressed from rat striatum poly(A)+ RNA showed the same ionic selectivity, being permeable mostly to Na+ and K+. The current-voltage relationships of GluR1 showed a strong inward rectification, whereas those of KA receptor-channels expressed from poly(A)+ RNA from various rat brain regions were more linear.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号