首页 | 本学科首页   官方微博 | 高级检索  
检索        


Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction
Authors:Guo  Yiru  Wysoczynski  Marcin  Nong  Yibing  Tomlin  Alex  Zhu  Xiaoping  Gumpert  Anna M  Nasr  Marjan  Muthusamy  Senthikumar  Li  Hong  Book  Michael  Khan  Abdur  Hong  Kyung U  Li  Qianhong  Bolli  Roberto
Institution:1.The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
;
Abstract:

This study aimed to investigate the role of the intrinsic cardiac nervous system in the mechanism of classical myocardial ischaemic preconditioning (IPC). Isolated perfused rat hearts were subjected to 35-min regional ischaemia and 60-min reperfusion. IPC was induced as three cycles of 5-min global ischaemia–reperfusion, and provided significant reduction in infarct size (IS/AAR = 14 ± 2% vs control IS/AAR = 48 ± 3%, p < 0.05). Treatment with the ganglionic antagonist, hexamethonium (50 μM), blocked IPC protection (IS/AAR = 37 ± 7%, p < 0.05 vs IPC). Moreover, the muscarinic antagonist, atropine (100 nM), also abrogated IPC-mediated protection (IS/AAR = 40 ± 3%, p < 0.05 vs IPC). This indicates that intrinsic cardiac ganglia remain intact in the Langendorff preparation and are important in the mechanism of IPC. In a second group of experiments, coronary effluent collected following IPC, from ex vivo perfused rat hearts, provided significant cardioprotection when perfused through a naïve isolated rat heart prior to induction of regional ischaemia–reperfusion injury (IRI) (IS/ARR = 19 ± 2, p < 0.05 vs control effluent). This protection was also abrogated by treating the naïve heart with hexamethonium, indicating the humoral trigger of IPC induces protection via an intrinsic neuronal mechanism (IS/AAR = 46 ± 5%, p < 0.05 vs IPC effluent). In addition, a large release in ACh was observed in coronary effluent was observed following IPC (IPCeff = 0.36 ± 0.03 μM vs C eff = 0.04 ± 0.04 μM, n = 4, p < 0.001). Interestingly, however, IPC effluent was not able to significantly protect isolated cardiomyocytes from simulated ischaemia–reperfusion injury (cell death = 45 ± 6%, p = 0.09 vs control effluent). In conclusion, IPC involves activation of the intrinsic cardiac nervous system, leading to release of ACh in the ventricles and induction of protection via activation of muscarinic receptors.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号