首页 | 本学科首页   官方微博 | 高级检索  
     

基于影像组学的肝脏脂肪变性研究
引用本文:张弛,张政,张蕾,朱磊,汪丰. 基于影像组学的肝脏脂肪变性研究[J]. 中国医疗设备, 2021, 0(3): 95-98
作者姓名:张弛  张政  张蕾  朱磊  汪丰
作者单位:东南大学生物科学与医学工程学院;上海市第一人民医院放射科
基金项目:江苏省重点研发计划(产业前瞻与共性关键技术)资助项目(BE2017007-3)。
摘    要:目的 利用影像组学与集成学习进行肝脏脂肪变性分级研究.方法 回顾性分析2018年6月至8月于上海市第一人民医院进行MR上腹部mDixon成像序列扫描的成人患者资料,将患者的MRI数据利用影像组学特征提取方法和机器学习进行建模,研究采用3项指标对三种集成学习分类算法(AdaBoost、GBDT与XGBoost)的性能进行...

关 键 词:影像组学  集成学习  脂肪变性分级  MRI

Analysis and Classification Hepatic Steatosis Using Radiomics Analysis of MRI
ZHANG Chi,ZHANG Zheng,ZHANG Lei,ZHU Lei,WANG Feng. Analysis and Classification Hepatic Steatosis Using Radiomics Analysis of MRI[J]. Chinese medical equipment, 2021, 0(3): 95-98
Authors:ZHANG Chi  ZHANG Zheng  ZHANG Lei  ZHU Lei  WANG Feng
Affiliation:(School of Biological Sciences and Medical Engineering,Southeast University,Nanjing Jiangsu 210096,China;Department of Radiology,Shanghai General Hospital,Shanghai 201620,China)
Abstract:Objective To study the classification of hepatic steatosis using radiomics and ensemble learning.Methods A retrospective study was conducted on the datum of adult patients who underwent abdomen MRI with mDixon sequence scanning from June 2018 to August 2018 in Shanghai General Hospital.The MRI data of patients were modeled by using the method of radiomics feature extraction and machine learning.Three indexes were used to evaluate the performance of three ensemble learning classification algorithms(AdaBoost,GBDT and XGBoost),including the rate of accuracy and recall.Results The XGBoost algorithm had the best performance,the classification accuracy was 81.9%,and the sum of the importance of the five features was greater than 19%,which meant that the weight of the total liver fat deformation degree classification model was close to 1/5.Conclusion The method of combining radiomics and ensemble learning provides a more reliable auxiliary diagnostic means for the classification of steatosis.The study of mild to moderate steatosis can also provide a certain reference value for clinical intervention or treatment opportunity of lipid metabolism related diseases.
Keywords:radiomics  ensemble learning  classification of steatosis  MRI
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号