首页 | 本学科首页   官方微博 | 高级检索  
检索        


Synovial stem cells and their responses to the porosity of microfibrous scaffold
Authors:Benjamin Li-Ping Lee  Zhenyu Tang  Aijun Wang  Fang Huang  Zhiqiang Yan  Dong Wang  Julia S Chu  Neerav Dixit  Li Yang  Song Li
Institution:1. UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA;2. Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA;3. Institute of Mechanobiology and Medical Engineering, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China;4. “111” Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, People’s Republic of China
Abstract:Tissue-specific stem cells can be coaxed or harvested for tissue regeneration. In this study, we identified and characterized a new type of stem cells from the synovial membrane of knee joint, named neural crest cell-like synovial stem cells (NCCL-SSCs). NCCL-SSCs showed the characteristics of neural crest stem cells: they expressed markers such as Sox10, Sox17 and S100β, were clonable, and could differentiate into neural lineages as well as mesenchymal lineages, although NCCL-SSCs were not derived from neural crest during the development. When treated with transforming growth factor β1 (TGF-β1), NCCL-SSCs differentiated into mesenchymal stem cells (MSCs), lost the expression of Sox17 and the differentiation potential into neural lineages, but retained the potential of differentiating into mesenchymal lineages. To determine the responses of NCCL-SSCs to microfibrous scaffolds for tissue engineering, electrospun composite scaffolds with various porosities were fabricated by co-electrospinning of structural and sacrificial microfibers. The increase in the porosity in microfibrous scaffolds enhanced cell infiltration in vitro and in vivo, but did not affect the morphology and the proliferation of NCCL-SSCs. Interestingly, microfibrous scaffolds with higher porosity increased the expression of chondrogenic and osteogenic genes but suppressed smooth muscle and adipogenic genes. These results suggest that the differentiation of NCCL-SSCs can be controlled by both soluble chemical factors and biophysical factors such as the porosity of the scaffold. Engineering both NCCL-SSCs and scaffolds will have tremendous potential for tissue regeneration.
Keywords:Synovial stem cells  Neural crest  Electrospinning  Scaffold  Porosity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号