Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells |
| |
Authors: | Brian C. Jensen Philip M. Swigart Megan D. Montgomery Paul C. Simpson |
| |
Affiliation: | 1. Cardiology Division, VA Medical Center; and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA 2. Cardiology Division, VA Medical Center; and Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA 4. VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA, 94121, USA
|
| |
Abstract: | Alpha-1-adrenergic receptors (α1-ARs) regulate coronary arterial blood flow by binding catecholamines, norepinephrine (NE), and epinephrine (EPI), causing vasoconstriction when the endothelium is disrupted. Among the three α1-AR subtypes (α1A, α1B, and α1D), the α1D subtype predominates in human epicardial coronary arteries and is functional in human coronary smooth muscle cells (SMCs). However, the presence or function of α1-ARs on human coronary endothelial cells (ECs) is unknown. Here we tested the hypothesis that human epicardial coronary ECs express functional α1-ARs. Cultured human epicardial coronary artery ECs were studied using quantitative real-time reverse transcription polymerase chain reaction, radioligand binding, immunoblot, and 3H-thymidine incorporation. The α1B-subtype messenger ribonucleic acid (mRNA) was predominant in cultured human epicardial coronary ECs (90–95% of total α1-AR mRNA), and total α1-AR binding density in ECs was twice that in coronary SMCs. Functionally, NE and EPI through the α1B subtype activated extracellular signal-regulated kinase (ERK) in ECs, stimulated phosphorylation of EC endothelial nitric oxide synthase (eNOS), and increased deoxyribonucleic acid (DNA) synthesis. These results are the first to demonstrate α1-ARs on human coronary ECs and indicate that the α1B subtype is predominant. Our findings provide another potential mechanism for adverse cardiac effects of drug antagonists that nonselectively inhibit all three α1-AR subtypes. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|