首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced long-chain fatty acid uptake contributes to overaccumulation of triglyceride in hyperinsulinemic insulin-resistant 3T3-L1 adipocytes
Authors:Ying-Hsiu Lai  Yueh Chien  Ching Fai Kwok  Low-Tone Ho
Affiliation:aInstitute of Physiology, National Yang-Ming University, Taipei 11221, Taiwan;bDepartment of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan;cFaculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;dDivision of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
Abstract:The precise pathogenesis of obesity remains controversial. In obesity, diminished adipose glucose utilization suggests that some other substrates may be responsible for the adipose triglyceride (TG) overaccumulation. Here we attempted to evaluate if long-chain fatty acid (LCFA) flux was modulated by a physiologically relevant condition of hyperinsulinemia in 3T3-L1 adipocytes and if the altered LCFA influx might eventually contribute to the TG overaccumulation in obesity. The effects of prolonged insulin exposure to adipocytes on basal, insulin-stimulated LCFA uptake as well as intracellular LCFA metabolism were measured. Prolonged insulin exposure was found to induce insulin resistance (IR) yet enhance basal and insulin-stimulated LCFA uptake in normoglycemic condition, and the addition of high glucose exacerbated these abnormalities of both glucose and LCFA influx. Along with the enhanced LCFA uptake was an increase in the rates of intracellular LCFA deposition and incorporation into TG; but a decrease was found in basal and insulin-suppressive LCFA oxidation, as well as in isoproterenol-induced fatty acid efflux. Inhibition of either phosphatidylinositol 3-kinase or mitogen-activated protein kinase (MAPK) pathway did not prevent the induction of IR, whereas the enhanced basal and insulin-stimulated LCFA uptake was abrogated by inhibition of MAPK pathway. In hyperinsulinemic insulin-resistant 3T3-L1 adipocytes, basal and insulin-stimulated LCFA uptake tends to increase via a MAPK-dependent mechanism. The increment of LCFA influx predominantly accounts for TG overaccumulation, but not for mitochondrial oxidation, and is prone to retain within adipocytes. These findings may interpret the plausible mechanism of pathogenesis for obesity in hyperinsulinemia-associated IR.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号