首页 | 本学科首页   官方微博 | 高级检索  
     


Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence
Authors:Tront Jennifer S  Hoffman Barbara  Liebermann Dan A
Affiliation:Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
Abstract:The Gadd45 family of proteins is known to play a central role as cellular stress sensors that modulate the response of mammalian cells to stress inflicted by physiologic and environmental stressors. Gadd45a was shown to be a direct target to the p53 and BRCA1 tumor suppressor genes, whose loss of function is known to play a vital role in breast carcinogenesis; however, the role of Gadd45a in the suppression of breast cancer remains unclear. To address this issue, Gadd45a-deficient mice were crossed with breast cancer prone mouse mammary tumor virus-Ras mice to generate mice that express activated Ras and differ in their Gadd45a status. Using this mouse model, we show that the loss of Gadd45a accelerates Ras-driven mammary tumor formation, exhibiting increased growth rates and a more aggressive histologic phenotype. Moreover, it is shown that accelerated Ras-driven tumor formation in the absence of Gadd45a results in both a decrease in apoptosis, which is linked to a decrease in c-Jun NH(2)-terminal kinase (JNK) activation, and a decrease in Ras-induced senescence, which is correlated with a decrease in p38 kinase activation. Altogether, these results provide a novel model for the tumor-suppressive function of Gadd45a in the context of Ras-driven breast carcinogenesis, showing that Gadd45a elicits its function through activation of the stress-induced JNK and p38 kinases, which contribute to increase in apoptosis and Ras-induced senescence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号