首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the major histocompatibility complex in T cell activation of B cell subpopulations. lyb-5(+) and lyb-5(-) B cell subpopulations differ in their requirement for major histocompatibility complex-restricted T cell recognition
Authors:A Singer   PJ Morrissey   KS Hathcock   A Ahmed   I Scher     RJ Hodes
Abstract:This report has examined the requirements for T helper (T(H)) cell recognition of major histocompatibility complex (MHC) determinants expressed by B cells for the activation of unprimed Lyb-5(+) and Lyb-5(-) B cell subpopulations . The generation of primary T(H) cell-dependent plaque-forming cell responses in vitro microculture required the presence of Lyb-5(+) B cells because B cell populations that were deprived, either genetically or serologically, of the Lyb-5(+) subpopulation were not activated in these responses. Cell-mixing experiments in which A X B {arrow} A chimeric T(H) cells were mixed with purified populations of parental accessory cells and parental B cells demonstrated that the in vitro activation of Lyb-5(+) B cells did not require T(H) cell recognition of B cell MHC determinants, although it did require T(H) cell recognition of accessory cell MHC determinants . In contrast to the failure of Lyb-5(-) B cells to be activated in primary T(H) cell-dependent responses in vitro microculture, isolated populations of Lyb-5(-) B cells were triggered by T(H) cells in vivo in short-term adoptive transfer experiments . By the use of A X B {arrow} A chimeric T(H) cells and parental strain B adoptive hosts, it was possible in vivo to distinguish genetically restricted T(H) cell recognition of B cells from genetically restricted T(H) cell recognition of accessory cells. Similar to the results obtained in vitro, the activation in vivo of unfractionated (Lyb-5(+) plus Lyb-5(-)) B cell populations did not require T(H) cell recognition of B cell MHC determinants . In contrast, in the same in vivo responses activation of isolated populations of Lyb-5(-) B cells did require T(H) cell recognition of B cell MHC determinants. The most straightforward interpretation of these experiments is that T(H) cell recognition of B cell MHC determinants is required for the activation of Lyb-5(-) B cells but is not required for the activation of Lyb-5(+) B cells . To better understand why T(H) cell activation of one B cell subpopulation is genetically restricted, whereas activation of another subpopulation is not, the response of Lyb-5(+) and Lyb-5(-) B cells to the soluble activating factors present in concanavalin A-induced spleen cell supernates (Con A SN) was examined. It was observed that Lyb-5(-) B cells, as opposed to Lyb-5(+) B cells, were unable to respond in microculture to the nonspecific T(H) cell- activating factors present in Con A SN, even though they were able to nonspecifically respond under the same conditions to trinitrophenyllipopolysaccharide. It was observed that the ability of B cell subpopulations to respond to nonspecific soluble T cell factors paralleled their ability to be activated by T(H) cells in a genetically unrestricted manner. Thus, the present experiments demonstrate that activation by T(H) cells of Lyb-5(-) B cells is MHC restricted, whereas activation of Lyb-5(+) B cells is not. These experiments suggest that one possible explanation for such differences is that activation of Lyb-5(+) B cells does not require direct interaction with T(H) cells because they can be activated by soluble activation signals that T(H) cells secrete.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号