首页 | 本学科首页   官方微博 | 高级检索  
     


The mechanism of patulin's cytotoxicity and the antioxidant activity of indole tetramic acids
Authors:R T Riley  J L Showker
Affiliation:Toxicology and Mycotoxins Research Unit, U.S. Department of Agriculture/Agricultural Research Service, Athens, Georgia 30613.
Abstract:In LLC-PK1 cells exposed to patulin (50 microM), lipid peroxidation, abrupt calcium influx, extensive blebbing, and total LDH release appeared to be serially connected events with each representing a step in the loss of structural integrity of the plasma membrane. The aforementioned patulin-induced events were prevented by concurrent incubation with butylated hydroxytoluene, deferoxamine, and cyclopiazonic acid, a fungal metabolite. Patulin also caused depletion of nonprotein sulfhydryls, increased 86Rb+ efflux, dome collapse, and eventually the loss of cell viability. These events were not prevented by antioxidants, results consistent with the hypothesis that they were also serially connected but occurring parallel to those previously mentioned. The earliest events observed in patulin-treated cells were the decrease in nonprotein sulfhydryls and increase in 86Rb+ efflux (5 min) which occurred before statistically significant alterations in protein-bound sulfhydryls. The increased potassium efflux (86Rb+ efflux) occurred via a pathway distinct from BaCl2, quinine, or tetraethylammonium sensitive potassium channels. This is the first published report of the antioxidant activity of indole tetramic acids (cyclopiazonic acid and cyclopiazonic acid imine). The protective effect of tetramic acids in LLC-PK1 cells was restricted to indole tetramic acids, and their prevention of lipid peroxidation did not involve iron chelation. The results of this study demonstrate that cyclopiazonic acid is a potent inhibitor of azide-insensitive, ATP-dependent, a23187-sensitive calcium uptake by the lysate of LLC-PK1 cells. This result is consistent with the hypothesis that the endoplasmic reticulum calcium transport ATPase is a sensitive target for cyclopiazonic acid in LLC-PK1 cells. These findings raise the interesting possibility that the antioxidant activity of indole tetramic acids may involve multiple novel mechanisms: surface charge alterations on the cytoplasmic surface of plasma membranes, alterations in calcium permeability in the plasma and endoplasmic reticulum membrane, and inhibition of the calcium-dependent ATPase of the endoplasmic reticulum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号