首页 | 本学科首页   官方微博 | 高级检索  
检索        


Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex
Authors:J J Hablitz  U Heinemann
Institution:Department of Neurology, Baylor College of Medicine, Houston, TX 77030.
Abstract:Local changes in extracellular ion concentrations were measured with ion-sensitive microelectrodes in slices of mature (greater than 40 days of age) or immature (16-30 days of age) rat neocortex maintained in vitro. Repetitive stimulation resulted in increases in extracellular potassium (K+]o) to levels of 8.85 +/- 2.1 mM in slices from adult animals and 12.77 +/- 1.8 mM in slices from immature animals. During exposure to picrotoxin, maximum levels were 11.3 +/- 2.6 and 14.8 +/- 2.5 mM in the mature and immature groups, respectively. Picrotoxin (50 microM) induced spontaneous bursts of repetitive spiking, followed by a slow, negative field potential, associated with spreading depression (SD), in slices from immature animals. K+]o levels increased to 10.2 +/- 3.9 mM during repetitive spike discharges and reached 30.3 +/- 18.5 mM during SDs. Variations in the size of the extracellular space (ES) were examined during SD. The ES was found to reversibly decrease by 39 +/- 4.5%. Clusters of repetitive spikes were associated with 0.1-0.2 mM decreases in Ca2+]o, whereas 1.12 +/- 0.06 mM decreases were observed during SDs. Decreases in Na+]o and Cl-]o of 56 +/- 10 mM and 41 +/- 9 mM, respectively, were observed during SDs suggesting that a net transmembrane movement of water occurred during SDs. These results indicate that changes in K+]o associated with epileptiform activity in the immature nervous system are quantitatively different from those observed in the mature brain. These large increases in K+]o may contribute to the prolonged nature of epileptiform discharges in the developing nervous system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号