首页 | 本学科首页   官方微博 | 高级检索  
检索        


The systems biology of mitochondrial fission and fusion and implications for disease and aging
Authors:Anuradha Chauhan  Julio Vera  Olaf Wolkenhauer
Institution:1. Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
Abstract:Mitochondria organize themselves as dynamic populations within a cell, by undergoing continuous cycles of fission and fusion. The spatio-temporal distribution and abundance of mitochondria determines the cell’s energy budget and is thus intimately linked to the cell’s response to environmental stimuli during aging. The dynamic balance of mitochondrial fission and fusion can be studied in terms of antagonistic subpopulations that regulate the mitochondrial responses in space and time. The dynamic nature of these processes motivates mathematical modelling and the simulation of such complex process. In several neurodegenerative and metabolic diseases the dynamic balance of fission and fusion is disturbed. However, how this dynamics plays a role in the progression of diseases is largely unclear. Fission and fusion help mitochondria to regulate cellular energy (ATP) levels, and minimize accumulation of harmful oxidized material called reactive oxygen species which accelerate mutations in mitochondrial DNA (mtDNA) during aging. We discuss how systems biology approaches can be used to investigate the mechanisms controlling the fission–fusion dynamics under two categories: dissecting the design of its molecular regulatory motifs, and understanding complex mitochondrial responses through their population level interactions. This will help us to understand how different regulatory mechanisms regulate the ATP and mutation (mtDNA) landscape of mitochondria to a variety of environmental stimuli in order to maintain their function during aging.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号