首页 | 本学科首页   官方微博 | 高级检索  
检索        


A generalized relation for solid-state drug stability as a function of excipient dilution: Temperature-independent behavior
Authors:Kenneth C Waterman  Paul Gerst  Zhen Dai
Institution:Pfizer Global Research and Development, Groton, Connecticut 06340. ken.waterman@freethinktech.com.
Abstract:A proposed generalized relationship for the impact of excipients on the solid-state chemical stability of drug products is presented and shown to be consistent across multiple degradation products with two example drugs. In this model, when the number of drug particles is comparable to the number of excipient particles, the impact of the excipient on the degradant formation rate is independent of drug concentration. In contrast, when the number of drug particles is in excess of the number of excipient particles, a power–law relation (linear correlation between the logarithm of the degradant formation rate and the logarithm of the reciprocal of the drug concentration) is proposed based on a “quasi-liquid” model where drug particles fill in interstices between excipients. As predicted by this model, the experimental power–law lines have slopes of about 2/3 independent of temperature (0.61 ± 0.13 for n = 30 counting multiple degradation products and a range of temperatures and relative humidities for two drug products).
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号