首页 | 本学科首页   官方微博 | 高级检索  
     


Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro.
Authors:M. E. Laniado   E. N. Lalani   S. P. Fraser   J. A. Grimes   G. Bhangal   M. B. Djamgoz     P. D. Abel
Affiliation:Department of Surgery, Royal Postgraduate Medical School, London, United Kingdom.
Abstract:Ion channels are important for many cellular functions and disease states including cystic fibrosis and multidrug resistance. Previous work in the Dunning rat model of prostate cancer has suggested a relationship between voltage-activated Na+ channels (VASCs) and the invasive phenotype in vitro. The objectives of this study were to 1) evaluate the expression of VASCs in the LNCaP and PC-3 human prostate cancer cell lines by Western blotting, flow cytometry, and whole-cell patch clamping, 2) determine their role in invasion in vitro using modified Boyden chambers with and without a specific blocker of VASCs (tetrodotoxin). A 260-kd protein representing VASCs was found only in the PC-3 cell line, and these were shown to be membrane expressed on flow cytometry. Patch clamping studies indicated that functional VASCs were present in 10% of PC-3 cells and blocking these by tetrodotoxin (600 nmol/L) reduced their invasiveness by 31% (P = 0.02) without affecting the invasiveness of the LNCaP cells. These results indicate that the reduction of invasion is a direct result of VASC blockade and not a nonspecific action of the drug. This is the first report of VASCs in a human prostatic cell line. VASCs are present in PC-3 but not LNCaP cells as determined by both protein and functional studies. Tetrodotoxin reduced the invasiveness of PC-3 but not LNCaP cells, and these data suggest that ion channels may play an important functional role in tumor invasion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号