首页 | 本学科首页   官方微博 | 高级检索  
检索        


Long-term change in synaptic transmission in CA3 circuits followed by spontaneous rhythmic activity in rat hippocampal slices
Authors:Koushi Nakashima  Hatsuo Hayashi  Osamu Shimizu  Satoru Ishizuka
Institution:

a Department of Computer Science and Electronics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan

b Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino, Kitakyushu 808-0196, Japan

Abstract:The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (not, vert, similar1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.
Keywords:Hippocampal slices  GABAA antagonists  Antidromically tetanic stimulation  Mono- and poly- synaptic transmission  Long-term potentiation  Spontaneous epileptiform bursts
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号