首页 | 本学科首页   官方微博 | 高级检索  
     


Millisecond encoding precision of auditory cortex neurons
Authors:Christoph Kayser  Nikos K. Logothetis  Stefano Panzeri
Affiliation:aMax Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany;;bDivision of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom; and;cRobotics, Brain, and Cognitive Sciences Department, Italian Institute of Technology, 30 16163 Genoa, Italy
Abstract:Neurons in auditory cortex are central to our perception of sounds. However, the underlying neural codes, and the relevance of millisecond-precise spike timing in particular, remain debated. Here, we addressed this issue in the auditory cortex of alert nonhuman primates by quantifying the amount of information carried by precise spike timing about complex sounds presented for extended periods of time (random tone sequences and natural sounds). We investigated the dependence of stimulus information on the temporal precision at which spike times were registered and found that registering spikes at a precision coarser than a few milliseconds significantly reduced the encoded information. This dependence demonstrates that auditory cortex neurons can carry stimulus information at high temporal precision. In addition, we found that the main determinant of finely timed information was rapid modulation of the firing rate, whereas higher-order correlations between spike times contributed negligibly. Although the neural coding precision was high for random tone sequences and natural sounds, the information lost at a precision coarser than a few milliseconds was higher for the stimulus sequence that varied on a faster time scale (random tones), suggesting that the precision of cortical firing depends on the stimulus dynamics. Together, these results provide a neural substrate for recently reported behavioral relevance of precisely timed activity patterns with auditory cortex. In addition, they highlight the importance of millisecond-precise neural coding as general functional principle of auditory processing—from the periphery to cortex.
Keywords:hearing   neural code   spike timing   natural sounds   mutual information
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号