首页 | 本学科首页   官方微博 | 高级检索  
检索        


High intracranial pressure effects on cerebral cortical microvascular flow in rats
Authors:Bragin Denis E  Bush Rachel C  Müller Wolfgang S  Nemoto Edwin M
Institution:Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico 87131, USA. dbragin@salud.unm.edu
Abstract:To manage patients with high intracranial pressure (ICP), clinicians need to know the critical cerebral perfusion pressure (CPP) required to maintain cerebral blood flow (CBF). Historically, the critical CPP obtained by decreasing mean arterial pressure (MAP) to lower CPP was 60?mm Hg, which fell to 30?mm Hg when CPP was reduced by increasing ICP. We examined whether this decrease in critical CPP was due to a pathological shift from capillary (CAP) to high-velocity microvessel flow or thoroughfare channel (TFC) shunt flow. Cortical microvessel red blood cell velocity and NADH fluorescence were measured by in vivo two-photon laser scanning microscopy in rats at CPP of 70, 50, and 30?mm Hg by increasing ICP or decreasing MAP. Water content was measured by wet/dry weight, and cortical perfusion by laser Doppler flux. Reduction of CPP by raising ICP increased TFC shunt flow from 30.4±2.3% to 51.2±5.2% (mean±SEM, p<0.001), NADH increased by 20.3±6.8% and 58.1±8.2% (p<0.01), and brain water content from 72.9±0.47% to 77.8±2.42% (p<0.01). Decreasing CPP by MAP decreased TFC shunt flow with a smaller rise in NADH and no edema. Doppler flux decreased less with increasing ICP than decreasing MAP. The decrease seen in the critical CPP with increased ICP is likely due to a redistribution of microvascular flow from capillary to microvascular shunt flow or TFC shunt flow, resulting in a pathologically elevated CBF associated with tissue hypoxia and brain edema, characteristic of non-nutritive shunt flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号