首页 | 本学科首页   官方微博 | 高级检索  
     


Machine learning in cardiac CT: Basic concepts and contemporary data
Affiliation:1. Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, USA;2. Division of Cardiovascular Imaging, Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, USA;3. University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Groningen, The Netherlands;1. Department of Cardiology, Friedrich-Alexander-Universität, Germany;2. Department of Cardiac Surgery, Friedrich-Alexander-Universität, Germany;1. Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA;2. Department of Diagnostic and Interventional Radiology, University of Leipzig, Heart Center, Leipzig, Germany;3. Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, Boston, USA;4. Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA;5. Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
Abstract:Propelled by the synergy of the groundbreaking advancements in the ability to analyze high-dimensional datasets and the increasing availability of imaging and clinical data, machine learning (ML) is poised to transform the practice of cardiovascular medicine. Owing to the growing body of literature validating both the diagnostic performance as well as the prognostic implications of anatomic and physiologic findings, coronary computed tomography angiography (CCTA) is now a well-established non-invasive modality for the assessment of cardiovascular disease. ML has been increasingly utilized to optimize performance as well as extract data from CCTA as well as non-contrast enhanced cardiac CT scans. The purpose of this review is to describe the contemporary state of ML based algorithms applied to cardiac CT, as well as to provide clinicians with an understanding of its benefits and associated limitations.
Keywords:Machine learning  Computed tomography  Coronary artery calcium  Diagnostic performance  ML"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  machine learning  AUC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  area under the curve  SSS"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  segment stenosis score  EFV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  epicardial fat volume  CTP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  CT perfusion  KNN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  K nearest neighbor  PVE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  partial volume effect  CAC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  coronary artery calcium  MSCCTA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  multislice CCTA  CSCT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  cardiac calcium scoring CT  ICC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  intraclass correlation  QCA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  quantitative coronary angiography  FFR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  fractional flow reserve  LD-NCP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0165"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  low density non-calcified plaque  DSC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0175"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Dice score coefficients  IQR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0185"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  interquartile range
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号