首页 | 本学科首页   官方微博 | 高级检索  
     

基于网络药理学及分子对接技术探讨小白菊内酯治疗肺癌的分子机制
引用本文:孙杨,谷光宇,贾正虎,孟洁,高森. 基于网络药理学及分子对接技术探讨小白菊内酯治疗肺癌的分子机制[J]. 现代药物与临床, 2023, 38(5): 1062-1068
作者姓名:孙杨  谷光宇  贾正虎  孟洁  高森
作者单位:天津医科大学中新生态城医院 药剂科, 天津 300467;天津医科大学第二医院 全科医学科, 天津 300211;暨南大学 生物医学转化研究院, 广东 广州 510632;天津市宁河区医院 妇科, 天津 301500;天津医科大学总医院 药剂科, 天津 300052
基金项目:国家自然科学基金资助项目(8207091525,81872236)
摘    要:目的 基于网络药理学和分子对接技术探究小白菊内酯治疗肺癌的分子机制。方法 从Swiss Target Prediction、SuperPred和HERB数据库筛选小白菊内酯的作用靶基因。通过GeneCards、OMIM、PharmGkb、TTD、DrugBank和DisGeNET数据库收集肺癌的疾病靶基因。使用Cytoscape软件构建“药物–靶基因–疾病”网络,利用STRING数据库构建蛋白互作网络(PPI);通过Bioconductor平台进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)富集分析,利用分子对接技术确定小白菊内酯与核心靶基因结合作用。结果 小白菊内酯靶基因共88个,肺癌相关基因8 814个,取交集得到小白菊内酯–肺癌共同靶基因68个。在PPI网络中,组蛋白去乙酰化酶2(HDAC2)、细胞色素P450(CYP)2D6、CYP3A4、CYP2A6、前列腺素内过氧化物酶2(PTGS2)、Toll样受体4(TLR4)、溴结构域包含蛋白(BRD)2、BRD4、单胺氧化酶A(MAOA)、无嘌呤/无嘧啶核酸内切酶-1(APEX1)是小白菊内酯作用于肺癌的10个核心基因...

关 键 词:小白菊内酯  肺癌  网络药理学  分子对接  作用机制  细胞色素P450
收稿时间:2023-02-02

Molecular mechanism of parthenolide in treatment of lung cancer based on network pharmacology and molecular docking technology
SUN Yang,GU Guang-yu,JIA Zheng-hu,MENG Jie,GAO Sen. Molecular mechanism of parthenolide in treatment of lung cancer based on network pharmacology and molecular docking technology[J]. Drugs & Clinic, 2023, 38(5): 1062-1068
Authors:SUN Yang  GU Guang-yu  JIA Zheng-hu  MENG Jie  GAO Sen
Affiliation:Department of Pharmacy, Sino-Singapore Eco-city Hospital of Tianjin Medical University, Tianjin 300467, China;Department of General Practice, The Second Hospital of Tianjin Medical University, Tianjin 300211, China;Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China;Department of Gynecology, Tianjin Ninghe District Hospital, Tianjin 301500, China; Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin 300052, China
Abstract:Objective To study the molecular mechanism of parthenolide in treatment of lung cancer based on network pharmacology and molecular docking methods. Methods The potential targets of parthenolide were obtained from the Swiss Target Prediction, SuperPred, and HERB databases, and the relevant targets of lung cancer were screened from the DisGeNET, GeneCards, PharmGkb, TTD, DrugBank, and OMIM databases. The drug-target-disease network was constructed by Cytoscape software. The protein-protein interaction (PPI) network was drawn through the STRING database. Gene Ontology (GO) and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by the Bioconductor platform. Molecular docking was used to determine the binding of parthenolide to core target genes. Results A total of 88 potential targets of parthenolide were chosen, 8 814 lung cancer-related targets were identified, and 68 overlapping targets were obtained. In the PPI network, HDAC2, CYP2D6, CYP3A4, CYP2A6, PTGS2, TLR4, BRD2, BRD4, MAOA, and APEX1 were the core targets. GO molecular functions of common target genes mainly involve 623 biological processes, such as the response to exogenous stimuli, arachidonic acid metabolism, outer plasma membrane, the addition or reduction of REDOX enzyme activity with molecular oxygen, the action of paired donor, p53 binding and G protein-coupled amine receptor activity. KEGG signaling pathway is mainly concentrated in 11 signaling pathways, including chemical carcinogenation-DNA adducts, drug metabolity-cytochrome P450, and cytochrome P450 metabolism of heterogeneous substances. Molecular docking analysis showed that there was good binding activity between parthenolide and 10 core genes, and hydrogen bond and π-π stacking were the main forms of interaction. Conclusion Parthenolide can treat lung cancer through multi-target and multi-pathway.
Keywords:parthenolide  lung cancer  network pharmacology  molecular docking  mechanism  cytochromeP450
点击此处可从《现代药物与临床》浏览原始摘要信息
点击此处可从《现代药物与临床》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号