首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent.
Authors:M K Gupta  D Goldman  R H Bogner  Y C Tseng
Affiliation:School of Pharmacy, University of Connecticut, U-2092, Storrs, CT 06269-2092, USA.
Abstract:A combination of solid dispersion and surface adsorption techniques was used to enhance the dissolution of a poorly water-soluble drug, BAY 12-9566. In addition to dissolution enhancement, this method allows compression of the granulated dispersion into tablets. Gelucire 50/13 (polyglycolized glycerides) was used as the solid dispersion carrier. Hot-melt granulation was performed to adsorb the melt of the drug and Gelucire 50/13 onto the surface of Neusilin US2 (magnesium alumino silicate), the surface adsorbent. Dispersion granules using various ratios of drug-Gelucire 50/13-Neusilin US2 were thus prepared. The dissolution profiles of BAY 12-9566 from the dispersion granules and corresponding physical mixtures were evaluated using USP Type II apparatus at 75 rpm. The dissolution medium consisted of 0.1 N hydrochloric acid (HCl) with 1% w/v sodium lauryl sulfate (SLS). Dissolution of BAY 12-9566 from the dispersion granules was enhanced compared to the physical mixture. The dissolution of BAY 12-9566 increased as a function of increased Gelucire 50/13 and Neusilin US2 loading and decreased with increased drug loading. In contrast to the usually observed decrease in dissolution on storage, an enhancement in dissolution was observed for the dispersion granules stored at 40 degrees C/75% relative humidity (RH) for 2 and 4 weeks. Additionally, the flow and compressibility properties of dispersion granules were improved significantly when compared to the drug alone or the corresponding physical mixture. The ternary dispersion granules were compressed easily into tablets with up to 30% w/w drug loading. The extent of dissolution of drug from these tablets was greater than that from the uncompressed dispersion granules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号