首页 | 本学科首页   官方微博 | 高级检索  
检索        


MYC-xing it up with PIK3CA mutation and resistance to PI3K inhibitors: summit of two giants in breast cancers
Authors:Nandini Dey  Brian Leyland-Jones  Pradip De
Institution:1.Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD;2.Department of Internal Medicine, SSOM, University of South Dakota, SD
Abstract:Approximately 35% of breast cancers exhibit PIK3CA activating mutation. Since PIK3CA hotspot mutation is the most frequently mutated gene in human breast cancers and primarily overlaps in HER2+ as well as ER+ breast cancers, the subset of patients bearing PIK3CA activating mutation does not get fullest benefit from either anti-HER2 or anti-hormonal agents. Literature also suggests that these patients may have chemotherapy resistance. Indeed, multiple clinical trials are currently evaluating the efficacy of over 30 drugs targeting different nodal points in the PI3K-AKT-mTOR pathway in breast and other cancers. However, to date, responses of solid tumors to PI3K pathway inhibitor monotherapy remains modest with an accompanied rapid emergences of drug resistance. MYC elevation represents one of the potential modes of actions by which breast tumors develop resistance to the PI3K pathway-specific targeted therapies. As products of oncogenes, both MYC and PIK3CA are well-established onco-proteins which contribute to breast oncogenesis. However, their similarities out number their dissimilarities in the context of their specific oncogenic cellular signals. In this review we will describe the specific cellular signals initiated following alteration in the MYC gene and PIK3CA gene in breast cancers. We will interrogate how MYC gene alterations influence the action of PI3K pathway targeted drugs in the context of PIK3CA mutation towards the development PI3K inhibitor induced drug-resistance in breast cancers.
Keywords:Breast tumors  MYC  PIK3CA  PI3K inhibitors  resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号