首页 | 本学科首页   官方微博 | 高级检索  
     


The role of Wnt signaling in bone and mineral metabolism
Authors:Peter V. N. Bodine  John A. Robinson  Ramesh A. Bhat  Julia Billiard  Frederick J. Bex  Barry S. Komm
Affiliation:(1) Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, PA;(2) Women's Health Research Institute, Wyeth Research, 500 Arcola Road, 19426 Collegeville, PA
Abstract:Regulation of canonical Wnt signaling in osteoblasts has been shown to play an important role in bone formation. Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein (LRP)5, cause osteoporosis pseudoglioma syndrome in humans, whereas gain-of-function mutations like G171V lead to high bone mass phenotypes. Mouse models of these conditions have enabled the mechanisms of LRP5 action on bone to be elucidated, and allation of additional pathway components like LRP6, Wnt-10b, and the antagonist secreted frizzled-related protein (sFRP)-1 has extended our understanding of Wnt action in the skeleton. LRP5−/− mice exhibit decreased trabecular bone volume (TBV) at an early age owing to reduced osteoblast proliferation and activity, whereas transgenic LRP5G171V/+ mice demonstrate increased TBV at a young age owing to reduced osteoblast and osteocyte apoptosis. Canonical Wnt signaling also plays a role in mechanosensory stimulation of osteoblasts in vitro, and the LRP5G171V/+ transgenic mice are resistant to disuse-induced bone loss. LRP6−/+ mice display diminished TBV indicating that LRP5 and LRP6 are both required for optimal osteoblast function. Wnt-10b−/− mice also exhibit reduced TBV, demonstrating that this is one of the ligands that controls bone formation. In contrast, sFRP-1−/− mice show heightened TBV, but not until adulthood when enhanced osteoblast proliferation, differentiation and activity, as well as diminished osteoblast and osteocyte apoptosis are observed. sFRP-1 also modulates osteoclast formation in vitro, and other family members like sFRP-4 are able to control phosphate metabolism in vivo. Moreover, anabolic factors like bone morphogenetic protein-2 and parathyroid hormone appear to at least partly control bone formation through intersection with Wnt signaling. Finally, new components of the Wnt pathways like the orphan tyrosine kinase receptor Ror2 have recently been identified as modulators of osteoblast physiology. Thus, Wnt signaling plays a substantial role in the regulation of bone and mineral metabolism. Future research will provide for a better understanding of the mechanisms for Wnt action in the skeleton.
Keywords:Low-density lipoprotein receptor-related protein  high bone mass  secreted frizzled-related protein  orphan tyrosine kinase receptor  osteoblast  osteoclast  apoptosis  proliferation  differentiation  mechanical loading
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号