首页 | 本学科首页   官方微博 | 高级检索  
检索        


An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium
Authors:B Brodin  Klaus A Rytved  Robert Nielsen
Institution:(1) Biochemical Department, August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100, Denmark, DK
Abstract: The aim of this study was to investigate the mechanisms by which increases in free cytosolic calcium (Ca2+]i) cause a decrease in macroscopic sodium absorption across principal cells of the frog skin epithelium. Ca2+]i was measured with fura-2 in an epifluorescence microscope set-up, sodium absorption was measured by the voltage-clamp technique and cellular potential was measured using microelectrodes. The endoplasmic reticulum calcium-ATPase inhibitor thapsigargin (0.4 μM) increased Ca2+]i from 66 ± 9 to 137 ± 19 nM (n = 13, P = 0.002). Thapsigargin caused the amiloride-sensitive short circuit current (I sc) to drop from 26.4 to 10.6 μA cm–2 (n = 19, P<0.001) concomitant with a depolarization of the cells from –79 ± 1 to –31 ± 2 mV (n = 18, P<0.001). Apical sodium permeability (P a Na) was estimated from the current/voltage (I/V) relationship between amiloride-sensitive current and the potential across the apical membrane. P a Na decreased from 8.01·10–7 to 3.74·10–7 cm s–1 (n = 7, P = 0.04) following an increase in Ca2+]i. A decrease in apical sodium permeability per se would tend to decrease I sc and result in a hyperpolarization of the cell potential and not, as observed, a depolarization. Serosal addition of the chloride channel inhibitors 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS), diphenylamine-2-carboxylate (DPC), indanyloxyacetic acid 94 (IAA-94) and furosemide reversed the depolarization induced by thapsigargin, indicating that chloride channels were activated by the increase in Ca2+]i. This was confirmed in wash-out experiments with 36Cl where it was shown that thapsigargin increased the efflux of chloride from 32.49 ± 5.01 to 62.63 ± 13.3 nmol·min–1 cm–2 (n = 5, P = 0.04). We conclude that a small increase in Ca2+]i activates a chloride permeability and inhibits the apical sodium permeability. The activation of chloride channels and the closure of apical sodium channels will tend to lower the macroscopic sodium absorption. Received: 25 June 1996 / Received after revision: 28 August 1996 / Accepted: 2 September 1996
Keywords:  Amiloride-sensitive sodium channel  Calcium-activated chloride channel  Intracellular calcium  Fura-2  Chloride channel blocker  Chloride-36
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号