Brain drug targeting and gene technologies. |
| |
Authors: | W M Pardridge |
| |
Affiliation: | Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1682, USA. wpardridge@mednet.ucla.edu |
| |
Abstract: | Brain drug targeting technology is based on the application of four gene technologies that enable the delivery of drugs or genes across the blood-brain barrier (BBB) in vivo. I) Genetic engineering is used to produce humanized monoclonal antibodies that target endogenous BBB transporters and act as vectors for delivery of drugs or genes to the human brain. The conjugate of a neurotherapeutic and a BBB transport vector is called a chimeric peptide. Epidermal growth factor chimeric peptides have been used for neuroimaging of brain cancer. Brain-derived neutrophic factor chimeric peptides have marked neuroprotective effects in brain stroke models. II) Imaging gene expression in the brain in vivo is possible with sequence-specific antisense radiopharmaceuticals, which are conjugated to BBB drug targeting vectors. III) Brain gene targeting technology enables widespread expression of an exogenous gene throughout the central nervous system following an intravenous injection of a non-viral therapeutic gene. IV) A BBB genomics program enables the future discovery of novel transport systems expressed at the BBB. These transporters may be carrier-mediated transport systems, active efflux transporters, or receptor-mediated transcytosis systems. The future discovery of novel BBB transport systems and the application of brain drug targeting technology will enable the delivery to the brain of virtually any neurotherapeutic, including small molecules, large molecules and gene medicines. |
| |
Keywords: | |
|
|