首页 | 本学科首页   官方微博 | 高级检索  
     


Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia.
Authors:M Meier  M L den Boer  A G Hall  J A E Irving  M Passier  L Minto  E R van Wering  G E Janka-Schaub  R Pieters
Affiliation:Department of Paediatric Oncology/Haematology, Erasmus MC/Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands.
Abstract:The T-lineage phenotype in children with acute lymphoblastic leukaemia (ALL) is associated with in vitro drug resistance and a higher relapse-risk compared to a precursor B phenotype. Our study was aimed to investigate whether mutations in the ATM gene occur in childhood T-lineage acute lymphoblastic leukaemia (T-ALL) that are linked to drug resistance and clinical outcome. In all, 20 different single nucleotide substitutions were found in 16 exons of ATM in 62/103 (60%) T-ALL children and 51/99 (52%, P = 0.21) controls. Besides the well-known polymorphism D1853N, five other alterations (S707P, F858L, P1054R, L1472W, Y1475C) in the coding part of ATM were found. These five coding alterations seem to occur more frequently in T-ALL (13%) than controls (5%, P = 0.06), but did not associate with altered expression levels of ATM or in vitro resistance to daunorubicin. However, T-ALL patients carrying these five coding alterations presented with a higher white blood cell count at diagnosis (P = 0.05) and show an increased relapse-risk (5-year probability of disease-free survival (pDFS) = 48%) compared to patients with other alterations or wild-type ATM (5-year pDFS = 76%, P = 0.05). The association between five coding ATM alterations in T-ALL, their germline presence, white blood cell count and unfavourable outcome may point to a role for ATM in the development of T-ALL in these children.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号