首页 | 本学科首页   官方微博 | 高级检索  
检索        


Inhibition [corrected] of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx
Authors:Wachowiak Matt  McGann John P  Heyward Philip M  Shao Zuoyi  Puche Adam C  Shipley Michael T
Institution:Department of Biology, Boston University, MA 02215, USA. dmattw@bu.edu
Abstract:We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical-imaging techniques that selectively report activity in the ORN presynaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapid fluorescence increases that were largely blocked by the N-type calcium channel blocker omega-conotoxin GVIA. Paired shocks revealed a long-lasting suppression of calcium influx with approximately 40% suppression at 400-ms interstimulus intervals and a recovery time constant of approximately 450 ms. Blocking activation of postsynaptic olfactory bulb neurons with APV/CNQX reduced this suppression. The GABA(B) receptor agonist baclofen inhibited calcium influx, whereas GABA(B) antagonists reduced paired-pulse suppression without affecting the response to the conditioning pulse. We also imaged transmitter release directly using a mouse line that expresses synaptopHluorin selectively in ORNs. We found that the relationship between calcium influx and transmitter release was superlinear and that paired-pulse suppression of transmitter release was reduced, but not eliminated, by APV/CNQX and GABA(B) antagonists. These results demonstrate that primary olfactory input to the CNS can be presynaptically regulated by GABAergic interneurons and show that one major intracellular pathway for this regulation is via the suppression of calcium influx through N-type calcium channels in the presynaptic terminal. This mechanism is unique among primary sensory afferents.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号