首页 | 本学科首页   官方微博 | 高级检索  
     

惩罚logistic回归用于高维变量选择的模拟评价
摘    要:目的 logistic回归是生物医学研究中常用的方法,可以进行影响因素筛选、概率预测、分类等。高通量测序技术得到的数据给高维变量选择问题带来挑战。惩罚logistic回归可以对高维数据进行变量选择和系数估计,且其有效的算法保证了计算的可行性。方法本文介绍了常用的惩罚logistic算法如LASSO(least absolutes shrinkage and selection operator)、EN(elastic net)、SCAD(smoothly clipped absolute deviation)、MCP(minimax concave penalty)以及SIS(sure independence screening)等,并用模拟数据对各方法进行评价。结果 (1)各方法的结果与自变量间的相关程度有关,不同惩罚logistic回归的精确性与自变量间的相关程度有关,如果相关较高,LASSO或EN的结果较好,而在相关较低时,MCP或SCAD结果较好;(2)结合SIS的方法倾向于少选变量,误选率低,但敏感度也低,而LASSO、MCP、SCAD选择变量较多,误选率高,但敏感度较高;(3)当自变量间低度相关时,SIS的三种方法结果非常接近,但相关较高时,SIS+LASSO的结果表现较好。结论采用非小细胞型肺癌的基因数据集进行实例分析,并表明如何根据模拟实验的结论,在多种方法的不同结果间进行选择。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号