首页 | 本学科首页   官方微博 | 高级检索  
     


Cortical Distribution of Fragile Periventricular Anastomotic Collateral Vessels in Moyamoya Disease: An Exploratory Cross-Sectional Study of Japanese Patients with Moyamoya Disease
Authors:A. Miyakoshi  T. Funaki  Y. Fushimi  T. Nakae  M. Okawa  T. Kikuchi  H. Kataoka  K. Yoshida  Y. Mineharu  M. Matsuhashi  E. Nakatani  S. Miyamoto
Abstract:BACKGROUND AND PURPOSE:Collateral vessels in Moyamoya disease represent potential sources of bleeding. To test whether these cortical distributions vary among subtypes, we investigated cortical terminations using both standardized MR imaging and MRA.MATERIALS AND METHODS:Patients with Moyamoya disease who underwent MR imaging with MRA in our institution were enrolled in this study. MRA was spatially normalized to the Montreal Neurological Institute space; then, collateral vessels were measured on MRA and classified into 3 types of anastomosis according to the parent artery: lenticulostriate, thalamic, and choroidal. We also obtained the coordinates of collateral vessel outflow to the cortex. Differences in cortical terminations were compared among the 3 types of anastomosis.RESULTS:We investigated 219 patients with Moyamoya disease, and a total of 190 collateral vessels (lenticulostriate anastomosis, n = 72; thalamic anastomosis, n = 21; choroidal anastomosis, n = 97) in 46 patients met the inclusion criteria. We classified the distribution patterns of collateral anastomosis as follows: lenticulostriate collaterals outflowing anteriorly (P < .001; 95% CI, 67.0–87.0) and medially (P < .001; 95% CI, 11.0–24.0) more frequently than choroidal collaterals; lenticulostriate collaterals outflowing anteriorly more frequently than thalamic collaterals (P < .001; 95% CI, 34.0–68.0); and choroidal collaterals outflowing posteriorly more frequently than thalamic collaterals (P < .001; 95% CI, 14.0–34.0). Lenticulostriate anastomoses outflowed to the superior or inferior frontal sulcus and interhemispheric fissure. Thalamic anastomoses outflowed to the insular cortex and cortex around the central sulcus. Choroidal anastomoses outflowed to the cortex posterior to the central sulcus and the insular cortex.CONCLUSIONS:Cortical distribution patterns appear to differ markedly among the 3 types of collaterals.

Collateral vessels in Moyamoya disease develop as the disease progresses.1 Lenticulostriate arteries (LSAs), perforators from the posterior communicating artery (PcomA), and anterior and posterior choroidal arteries (choAs) are representative collateral vessels that supply the cortex.2-4 Development of such collateral vessels represents a risk factor for intracerebral hemorrhage,3,5-7 and these vessels have frequently been considered as the vessels responsible for bleeding in recent reports.8-10 These collateral vessels connect with medullary arteries near the lateral ventricle and thus supply the cortex via the medullary arteries.3,4 However, no reports have addressed the cortical distributions of these collateral vessels.Bypass surgery reduces the risk of rebleeding in patients with hemorrhagic onset of Moyamoya disease7,11-13 and also shrinks collateral vessels in Moyamoya disease.7,12,14,15 Augmentation of cerebral blood flow via bypass seems to decrease the necessity for development of collateral flow and shrinks existing collaterals.15 To shrink risky collateral vessels effectively and prevent hemorrhage, well-designed and planned bypass surgeries may be required.16 Comprehension of the nature and cortical distribution of collateral vessels may thus be clinically useful.MRA performed using a 3T scanner has proved useful for detecting the abnormally extended collateral vessels in Moyamoya disease.2 We investigated the cortical distribution of collateral vessels using 3T MR imaging and MRA to clarify whether cortical distributions vary among anastomotic subtypes and to better understand collateral networks.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号