首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of the arterial input function on microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography
Authors:Gauthier Marianne  Pitre-Champagnat Stéphanie  Tabarout Farid  Leguerney Ingrid  Polrot Mélanie  Lassau Nathalie
Affiliation:IR4M-UMR 8081, Institut Gustave Roussy, 94805 Villejuif cedex, France. gauthier.marianne@gmail.com
Abstract:AIM: To evaluate the sources of variation influencing the microvascularization parameters measured by dynamic contrast-enhanced ultrasonography (DCE-US). METHODS: Firstly, we evaluated, in vitro , the impact of the manual repositioning of the ultrasound probe and the variations in flow rates. Experiments were conducted using a custom-made phantom setup simulating a tumor and its associated arterial input. Secondly, we evaluated, in vivo , the impact of multiple contrast agent injections and of examination day, as well as the influence of the size of region of interest (ROI) associated with the arterial input function (AIF). Experiments were conducted on xenografted B16F10 female nude mice. For all of the experiments, an ultrasound scanner along with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. Semi-quantitative and quantitative analyses were performed using two signal-processing methods. RESULTS:In vitro , no microvascularization parameters, whether semi-quantitative or quantitative, were significantly correlated (P values from 0.059 to 0.860) with the repositioning of the probe. In addition, all semiquantitative microvascularization parameters were correlated with the flow variation while only one quantitative parameter, the tumor blood flow, exhibited P value lower than 0.05 (P = 0.004). In vivo , multiple contrast agent injections had no significant impact (P values from 0.060 to 0.885) on microvascularization parameters. In addition, it was demonstrated that semi-quantitative microvascularization parameters were correlated with the tumor growth while among the quantitative parameters, only the tissue blood flow exhibited P value lower than 0.05 (P = 0.015). Based on these results, it was demonstrated that the ROI size of the AIF had significant influence on microvascularization parameters: in the context of larger arterial ROI (from 1.17 ± 0.6 mm 3 to 3.65 ± 0.3 mm 3 ), tumor blood flow and tumor blood volume were correlated with the tumor growth, exhibiting P values lower than 0.001. CONCLUSION: AIF selection is an essential aspect of the deconvolution process to validate the quantitative DCE-US method.
Keywords:Dynamic contrast-enhanced ultrasonography  Angiogenesis  Linear raw data  Arterial input function  Functional imaging
本文献已被 CNKI PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号