首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient prediction of the packing density of inorganic fillers in dental resin composites for excellent properties
Affiliation:1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China;2. Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China;3. School of Automation, China University of Geosciences, Wuhan 430074, China
Abstract:ObjectiveThe purpose of this study is to develop a mathematical model for efficient prediction of the packing density of different filler formulations in dental resin composites (DRCs), and to study properties of DRCs at the maximum filler loading (MFL), thereby providing an effective guidance for the design of filler formulations in DRCs to obtain excellent properties.MethodsThe packing density data generated by discrete element model (DEM) simulation were used to re-derive the parameters of 3-parameter model. The modifier effect was also induced to modify the 3-parameter model. DRCs with 10 filler formulations were selected to test properties at the MFL. The packing densities of binary and ternary mixes in DRCs were calculated by 3-parameter model to explore the regularity of composite packing.ResultsThe predicted packing density was validated by simulation and experimental results, and the prediction error is within 1.40 vol%. The optimization of filler compositions to obtain a higher packing density is beneficial to enhancing the mechanical properties and reducing the polymerization shrinkage of DRCs. In binary mixes, the maximum packing density occurs when the volume fraction of small fillers is 0.35−0.45, and becomes higher with the reduction of particle size ratio. In ternary mixes, the packing density can reach the maximum value when the volume fractions of large and small fillers are in the 0.5−0.75 and 0.15−0.4 ranges, respectively.SignificanceThe modified 3-parameter model can provide an effective method to design the multi-level filler formulations of DRCs, thereby improving the performance of the materials.
Keywords:Dental resin composites  Packing model  Modifier effect  Maximum filler loading  Filler formulations  Mechanical properties  Polymerization shrinkage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号