首页 | 本学科首页   官方微博 | 高级检索  
     


Scavenging of reactive oxygen species induced by hyperthermia in biological fluid
Authors:Megumi Ueno  Minako Nyui  Ikuo Nakanishi  Kazunori Anzai  Toshihiko Ozawa  Ken-ichiro Matsumoto  Yoshihiro Uto
Abstract:The scavenging activity of rat plasma against hyperthermia-induced reactive oxygen species was tested. The glutathione-dependent reduction of a nitroxyl radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, which was restricted by adding superoxide dismutase or by deoxygenating the reaction mixture, was applied to an index of superoxide (O2•−) generation. A reaction mixture containing 0.1 mM 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl and 1 mM glutathione was prepared using 100 mM phosphate buffer containing 0.05 mM diethylenetriaminepentaacetic acid. The reaction mixture was kept in a screw-top vial and incubated in a water bath at 37 or 44°C. The time course of the electron paramagnetic resonance signal of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl in the reaction mixture was measured by an X-band EPR spectrometer (JEOL, Tokyo, Japan). When the same experiment was performed using rat plasma instead of 100 mM PB, the glutathione-dependent reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, i.e., generation of O2•−, was not obtained. Only the first-order decay reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, which indicates direct reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, was obtained in rat plasma. Adding 0.5% albumin to the phosphate buffer reaction mixture could almost completely inhibit O2•− generation at 37°C. However, addition of 0.5% albumin could not inhibit O2•− generation at 44°C, i.e., hyperthermic temperature. Ascorbic acid also showed inhibition of O2•− generation by 0.01 mM at 37°C, but 0.02 mM or more could inhibit O2•− generation at 44°C. A higher concentration of ascorbic acid showed first-order reduction, i.e., direct one-electron reduction, of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl. Hyperthermia-induced O2•− generation in rat plasma can be mostly inhibited by albumin and ascorbic acid in the plasma.
Keywords:hyperthermia   reactive oxygen species   superoxide   electron paramagnetic resonance   nitroxyl redox probe
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号